
Problem 30.47

a.) Assuming the central axis of the solenoid is along the x-axis, the area vector will also be along the x-axis and the magnetic flux through the circle (disk) will be:

$$Φ_B = \vec{B} • \vec{A}$$

$$= BA cos 0^0$$

$$= (μ_o ni)(πR^2)$$

$$= \left[(4πx10^{-7} T • m / A) \left(\frac{300 \text{ turns}}{.3 \text{ m}} \right) (12 \text{ A}) \right] [π(.012 \text{ m})^2]$$

$$= 7.4x10^{-6} \text{ Webers}$$

1.)

b.) Because the magnetic field is essentially constant down the axis of a solenoid, the on thing tricky in the flux calculation is determine the area of the annulus's face. As such, we can write:

$$\Phi_{\rm B} = \vec{\rm B} \cdot \vec{\rm A}
= {\rm BA}\cos 0^{0}
= (\mu_{\rm o}{\rm ni})(\pi b^{2} - \pi a^{2})
= \left[(4\pi x 10^{-7} \text{ T} \cdot \text{m/A}) \left(\frac{300 \text{ turns}}{.3 \text{ m}} \right) (12 \text{ A}) \right] \left[\pi \left((.012 \text{ m})^{2} - (.012 \text{ m})^{2} \right) \right]
= 2.27 x 10^{-6} \text{ Webers}$$

2.)